
Novice’s Guide to AVR
Development

An Introduction
intended for
people with no
prior AVR
knowledge.

Preparing your PC for AVR Development
Let's make an easy start, and download the files that we will need later on.
First you should download the files to have them readily available when you
need them. This could take some time depending on your internet connection.

Download these files to a temporary folder on your computer. (e.g. C:\Temp):

When you have downloaded the files, it is time to install the software you
need.

Step 2. Installing AVR Studio 4
AVR Studio is also available in a version 3. We will use AVR Studio 4 since this
is the version that will eventually replace version 3.

Important note for people using Windows NT/2000/XP:
You must be logged in with administrator rights to be able to successfully
install AVR Studio. The reason is that these Windows systems have restrictions
regarding who can install new device drivers!

Installation:
1) Double click on the AVRSTUDIO.EXE file you downloaded. This file is a self
extracting file, and will ask where you want to extract the files. The default
path points to your "default" temp folder, and could be quite well "hidden" on
your hard disk, so make sure to read and remember this path, or enter a new
path to where you want the files placed (e.g. c:\temp)

2) Once all the files are extracted, open the temp folder, and double click on
the SETUP.EXE file. Just follow the installation, and use the default install path.
NB: You can use another path, but this tutorial assumes that you install it to
the default path.

That's it. Now you have installed all the software you'll need to write code and
run programs for all available AVR devices! Keep the Datasheet and Instruction
set Manual in a place you remember.

Basic AVR Knowledge
The AVR Microcontroller family is a modern architecture, with all the bells and
whistles associated with such. When you get the hang of the basic concepts
the fun of exploring all these features begins. For now we will stick with the
"Bare Bone" AVR basics.

The 3 different Flavors of AVR
The AVR microcontrollers are divided into three groups:
• tinyAVR
• AVR (Classic AVR)
• megaAVR

The difference between these devices lies in the available features. The
tinyAVR µC are usually devices with lower pin-count or reduced feature set
compared to the megaAVR's . All AVR devices have the same instruction set
and memory organization, so migrating from one device to another AVR is
easy.

Some AVR's contain SRAM, EEPROM, External SRAM interface, Analog to
Digital Converters, Hardware Multiplier, UART, USART and the list goes on.

If you take a tinyAVR and a megaAVR and strip off all the peripheral mod-
ules mentioned above, you will be left with the AVR Core. This Core is the
same for all AVR devices. (Think of Hamburgers: They all contain the same slab
of meat, the difference is the additional styling in the form of tripled-cheese
and pickles :)

Selecting the "correct" AVR
The morale is that the tinyAVR, AVR (Classic AVR) and megaAVR does not real-
ly reflect performance, but is more an indication of the "complexity" of the
device: Lot's of features = megaAVR, reduced feature set = tinyAVR . The "AVR
(Classic AVR)" is somewhere in between these, and the distinctions between
these groups are becoming more and more vague.

So for your project you should select an AVR that only includes the features
that you need if you are on a strict budget. If you run your own budget you
should of course go for the biggest AVR possible, since eh... because!

Learning to write code on the AVR
Learning new stuff is fun, but can be a bit frustrating. Although it is fully possi-
ble to learn the AVR by only reading the datasheet this is a complicated and time-
consuming approach. We will take the quick and easy approach, which is:

1. Find some pre-written, working code
2. Understand how this code works
3. Modify it to suite our needs
The device we will use is the AT90S8515 which is an AVR with a good blend
of peripherals. Take a few minutes to browse through the Datasheet.

Learning to use the AVR Datasheets
It is easy to get scared when looking at the AVR Datasheets. E.g. the
ATmega128(L) datasheet is almost 350 pages long, and reading it start to fin-
ish - and remembering the contents, is quite a task. Luckily you are not sup-
posed to do that, either. The datasheets are complete technical documents that
you should use as a reference when you are in doubt how a given peripheral
or feature works.

AVR STUDIO 4
(~15MB)

Assembly Sample Code
(~1kB)

AT90S8515 Datasheet
(~4MB)

Instruction Set Manual
(~2MB)

This file contains the AVR Studio 4 Program. This
program is a complete development suite, and
contains an editor and a simulator that we will
use to write our code, and then see how it will
run on an AVR device.

This file contains the Assembly Sample code
you will need to complete this guide.

This is the Datasheet for the AT90S8515 AVR
Microcontroller. This is a convenient "Getting
Started" device. For now you don't have to worry
about the different types of AVR micros. You'll see
that they are very much alike, and if you learn
how to use one (eg. 8515), you will be able to
use any other AVR without any problems.

This is the Instruction Set Manual. This document
is very useful if you want detailed information
about a specific instruction.

An Introduction
intended for
people with no
prior AVR
knowledge.

Starting with a new µC
architecture can be quite
fustrating. The most dif-
ficult task seems to be
how to get the informa-
tion and documentation
to get the first AVR pro-
gram up running.
This tutorial assumes
that you do not yet own
any AVR devices or AVR
development tools. It
also assumes that you
have no prior knowledge
of the AVR architecture
or instruction set. All you
need to complete this
tutorial is a computer
running some flavour of
the Windows operating
system, and an internet
connection to download
documents and files.

www.atmel.com
page 6

A T M E L A P P L I C A T I O N S J O U R N A L

By Arild Rødland,
AVRFreaks

www.atmel.com
page 7

When you open an AVR Datasheet you will discover that it can be divided into
these groups:
1. First Page Containing Key information and Feature List
2. Architectural Overview
3. Peripheral Descriptions
4. Memory Programming
5. Characteristics
6. Register Summary
7. Instruction Set Summary
8. Packaging Information

This is quite convenient. When you are familiar with how to use the
AT90S8515 Datasheet, migrating to another Datasheet should be a breeze.
After completing this tutorial you should take some time and read through the
Architectural Overview sections of the datasheets (At the beginning of the
Datasheets). These sections contain a lot of useful information about AVR
memories, Addressing modes and other useful information.

Another useful page to look at is the Instruction Set Summary. This is a nice
reference when you start developing code on your own. If you want in-depth
information about an instruction, simply look it up in the Instruction Set
Manual you previously downloaded!

OK! You have now installed the software, you have a vague knowledge of the
different types of AVRs, and know that there is a lot of information in the
datasheet that you don't yet know anything about! Good, now it's time to get
developing! Click "Next" to advance to the next part of this tutorial.

AVR Studio 4 GUI
Note: If you have not yet installed AVR Studio you should go to the Preparing
your PC for AVR Development section of this tutorial before continuing.

Step 1: Creating a New Project
Start AVR Studio 4 by launching AVR Studio 4 located at [START] | [Programs]
| [Atmel AVR Tools]. AVR Studio will start up, and you will get this dialog box.

We want to create a new Project so press the "Create New Project Button"

Step 2: Configuring Project Settings
This step involves setting up what kind of project we want to create, and set-
ting up filenames and location where they should be stored.

This is done in four steps:
1. Click on this to let the program know you want to create an Assembly

program
2. This is the name of the project. It could be anything, but "Leds" is quite

descriptive of what this program is going to do
3. Here you can specify if AVR Studio should automatically create a initial

assembly file. We want to do this. The filename could be anything, but use
"Leds" to be compatible with this tutorial!

4. Select the path where you want your files stored
5. Verify everything once more, and make sure both check-boxes are checked.

When you are satisfied, press the "Next >>" button

Step 3: Selecting Debug Platform
The AVR Studio 4 Software can be used as a frontend software for a wide
range of debugging tools.

1. AVR Studio 4 supports a wide range of emulation and debugging tools.
Since we have not purchased any of these yet, we will use the built in
simulator functionality.

2. ..and we want to develop for the AT90S8515 device
3. Verify all settings once more, then press "Finish" to create project and go

to the assembly file

Step 4: Writing your very first line of code
AVR Studio will start and open an empty file named Leds.asm. We will take a
closer look at the AVR Studio GUI in the next lesson. For now note that the
Leds.asm is not listed in the "Assembler" folder in the left column. This is
because the file is not saved yet. Write in this line: "; My Very First AVR
Project" as shown in the figure below. The semicolon ; indicates that the rest
of the line should be treated as a comment by the assembler.

To save the line press - S or select [Save] on the [File] menu. The Leds.asm
will now show up in the Left Column as shown below.

A T M E L A P P L I C A T I O N S J O U R N A L

OK! You have now installed

the software, you have a

vague knowledge of the

different types of AVRs,

and know that there is a

lot of information in the

datasheet that you don't

yet know anything about!

Good, now it's time to get

developing! Click "Next"

to advance to the next

part of this tutorial.

At this point you

should have installed

the software, and started

up the a new project

called "Leds" You should

also have the AT90S8515

Datasheet, stored some-

where you can easily find

it. If you can answer "Yes"

to both these questions,

you are ready to continue

writing some AVR Code.

www.atmel.com
page 8

OK, Now that we have AVR Studio up and running, it's time to take a closer
look at the AVR Studio GUI..

AVR Studio 4 GUI
Let's take a closer look at the AVR Studio Graphical User Interface (GUI).

As you can see below, we have divided the GUI into 6 sections. AVR Studio 4
contains a help system for AVR Studio, so instead of reinventing the wheel
here, I'll just explain the overall structure of AVR Studio 4 and point to where
in the AVR Studio 4 On-line Help System you can find in depth information.

1. The first line here is the "Menus" Here you will find standard windows
menus like save and load file, Cut & Paste, and other Studio specific menus
like Emulation options and stuff.

2. The next lines are Toolbars, which are "shortcuts" to commonly used
functions. These functions can be saving files, opening new views, setting
breakpoints and such.

3. The Workspace contains Information about files in your Project, IO view,
and Info about the selected AVR

4. This is the Editor window. Here you write your assembly code. It is also
possible to integrate a C-Compiler with AVR Studio, but this is a topic for
the more advanced user

5. Output Window. Status information is displayed here.
6. The System Tray displays information about which mode AVR Studio is

running in. Since we are using AT90S8515 in simulator mode, this will be
displayed here

More about the GUI
To complete this bare bone guide you don't need any more knowledge of the
GUI right now, but it is a good idea to take a look at the AVR Studio HTML
help system. You can start this by opening [HELP] [AVR Studio User Guide]
from AVR Studio, or by clicking this link (and select: Open) if you installed AVR
Studio to the default directory. When you have had your fill, we'll continue
working on our first AVR Program.

Writing your First AVR Program
At this point you should have installed the software, and started up the a new
project called "Leds" You should also have the AT90S8515 Datasheet, stored
somewhere you can easily find it. If you can answer "Yes" to both these ques-
tions, you are ready to continue writing some AVR Code.

In the Editor view in AVR Studio, continue your program (which at this point
only consists of the first line below) by adding the text top of next colum.
(Cheaters can simply cut & paste the source below into AVR Studio...)

Note that the source code changes color when written in the editor window.
This is known as syntax highlighting and is very useful make the code more
readable. Once the Source code is entered, press CTRL + F7 or select [Build
and Run] from the [Project] Menu.

In the output view (at the bottom left of the screen) you should get the fol-
lowing output indicating that the Project compiled correctly without any errors!
From this output window, we can also see that our program consists of 6
words of code (12 bytes).

Congratulations!! You have now successfully written your first AVR program,
and we will now take a closer look at what it does!

Note: If your program does not compile, check your assembly file for typing
errors. If you have placed the include files (8515def.inc) in a different folder
than the default, you may have to enter the complete path to the file in the
.include "c:\complete path\8515def.inc" statement. When it compiles we will
continue explaining and then debugging the code.

Sample Code (~1kB)

;My Very First AVR Project

.include "8515def.inc" ;Includes the 8515
definitions file

.def Temp = R16 ;Gives "Defines" Register
R16 the name Temp

.org 0x0000 ;Places the following code
from address 0x0000

rjmp RESET ;Take a Relative Jump to the
RESET Label

RESET: ;Reset Label
ldi Temp, 0xFF ;Store 255 in R16 (Since we

have defined R16 = Temp)
out DDRB, Temp ;Store this value in The

PORTB Data direction
Register

Loop: ;Loop Label
out PORTB, Temp ;Write all highs

(255 decimal) to PORTB
dec Temp ;Decrement R16 (Temp)
rjmp Loop ;Take a relative jump to the

Loop label

A T M E L A P P L I C A T I O N S J O U R N A L

www.atmel.com
page 9

Understanding the Source Code
OK so the code compiled without errors. That's great, but let us take a moment
to see what this program does, and maybe get a feeling how we should sim-
ulate the code to verify that it actually performs the way we intended. This is
the complete source code:

Now let's take a line-by-line look at what's going on in this code.

;My Very First AVR Project
Lines beginning with " ; " (semicolon) are comments. Comments can be added
to any line of code. If comments are written to span multiple lines, each of these
lines much begin with a semicolon

.include "8515def.inc"
Different AVR devices have e.g. PORTB placed on different location in IO memory.
These .inc files maps MNEMONICS codes to physical addresses. This allows you
for example to use the label PORTB instead of remembering the physical location
in IO memory (0x18 for AT90S8515)

.def Temp = R16
The .def (Define) allow you to create easy to remember labels (e.g. Temp)
instead of using the default register Name (e.g. R16). This is especially useful in
projects where you are working with a lot of variables stored in the general pur-
pose Registers (The Datasheet gives a good explanation on the General Purpose
Registers!)

.org 0x0000
This is a directive to the assembler that instructs it to place the following code at
location 0x0000 in Flash memory. We want to do this so that the following RJMP
instruction is placed in location 0 (first location of FLASH). The reason is that this
location is the Reset Vector, the location from where the program execution starts
after a reset, power-on or Watchdog reset event. There are a also other interrupt
vectors here, but our application does not use interrupts, so we can use this space
for regular code!
rjmp RESET
Since the previous command was the .org 0x0000, this Relative Jump (RJMP)
instruction is placed at location 0 in Flash memory, and is the first instruction to
be executed. If you look at the Instruction Set Summary in the Datasheet, you
will see that the AT90S8515 do not have a JMP instruction. It only has the RJMP
instruction! The reason is that we do not need the full JMP instruction. If you
compare the JMP and the RJMP you will see that the JMP instruction has longer
range, but requires an additional instruction word, making it slower and bigger.
RJMP can reach the entire Flash array of the AT90S8515, so the JMP instruction
is not needed, thus not implemented.

RESET:
This is a label. You can place these where you want in the code, and use the dif-
ferent branch instructions to jump to this location. This is quite neat, since the
assembler itself will calculate the correct address where the label is.

ldi Temp, 0xFF
Ah.. finally a decent instruction to look at: Load Immediate (LDI). This instruction
loads an Immediate value, and writes it to the Register given. Since we have
defined the R16 register to be called "Temp", this instruction will write the hex
value 0xff (255 decimal) to register R16.

out DDRB, Temp
Why aren't we just writing "ldi DDRB, Temp"? A good question, and one that
require that we take a look in the Instruction Set Manual. Look up the "LDI" and
"OUT" instructions. You will find that LDI has syntax : "LDI Rd, K" which means
that it can only be used with General Purpose Registers R16 to R31. Looking at
"OUT" instruction we see that the syntax is "OUT A, Rr" Which means that the
content that is going to be written by the OUT instruction has to be fetched from
one of the 32 (R0 to R31) General Purpose Registers.
Anyway, this instruction sets the Data Direction Register PORTB (DDRB) register to
all high. By setting this register to 0xFF, all IO pins on PORTB are configured as
outputs.

Loop
Another label...

out PORTB, Temp
We Now write the value 0xFF to PORTB, which would give us 5V (Vcc) on all
PORTB IO pins if we where to measure it on a real device. Since the IO ports is
perhaps the most used feature of the AVR it would be a good idea to open the
Datasheet on the PORTB. Notice that PORTB has 3 registers PORTB, PINB and
DDRB. In the PORTB register we write what we want written to the physical IO
pin. In the PINB register we can read the logic level that is currently present on
the Physical IO pin, and the DDRB register determines if the IO pin should be con-
figured as input or output. (The reason for 3 registers are the "Read-Modify-Write"
issue associated with the common 2 register approach, but this is a topic for the
Advanced class.)

dec Temp
This Decrement (DEC) instruction decrements the Temp (R16) register. After this
instruction is executed, the contents of Temp is 0xFE. This is an Arithmetic instruc-
tion, and the AVR has a wide range of Arithmetic instructions. For a complete list-
ing of available instruction: Look in the Instruction Set Summary in the Datasheet!

rjmp Loop
Here we make a jump back to the Loop lable. The program will thus continue to
write the Temp variable to PORTB decrementing it by one for each loop.

I guess you have figured out what our masterpiece is doing. We have made a
counter counting down from 255 to 0, but what happens when we reach
zero?

Simulating with the Source Code
AVR Studio 4 operates in different "modes". Back when we where writing the
code, we where in editor mode, now we are in debugging mode. Lets take a
closer look at these:
1. Note that a Yellow arrow has appeared on the first RJMP instruction. This

arrow points to the instruction that is about to be executed.
2. Note that the workspace has changed from Project to IO view. The IO view

is our peek-hole into the AVR, and it will probably be your most used view.
We will look closer at this one in a short while.

3. The bottom line contains status information. This Reads:
AT90S8535 Simulator, Auto, Stopped. This is followed by a yellow icon. It
is a good idea to check this information to verify that you have selected
the correct device and emulation tool.

Sample Code

;My Very First AVR Project

.include "8515def.inc" ;Includes the 8515 defini-
tions file

.def Temp = R16 ;Gives "Defines" Register R16
the name Temp

.org 0x0000 ;Places the following code
from address 0x0000

rjmp RESET ;Take a Relative Jump to the
RESET Label

RESET: ;Reset Label
ldi Temp, 0xFF ;Store 255 in R16 (Since we

have defined R16 = Temp)
out DDRB, Temp ;Store this value in The

PORTB Data direction Register

Loop: ;Loop Label
out PORTB, Temp ;Write all highs

(255 decimal) to PORTB
dec Temp ;Decrement R16 (Temp)
rjmp Loop ;Take a relative jump to the

Loop label

A T M E L A P P L I C A T I O N S J O U R N A L

I guess you have figured

out what our masterpiece

is doing. We have made

a counter counting down

from 255 to 0, but what

happens when we

reach zero?

After running through

this introduction you

should have a basic

idea of how to get a

program up and

running on the

AVR µC.

www.atmel.com
page 10

Setting up the IO View
Since our program mainly
operates on PORTB registers,
we will expand the IO view so
that we can take a closer look
at the contents of these regis-
ter. Expand the IO view (tree)
as shown in the figure on left:

Stepping through the Code
AVR Studio allows running the
code at full speed until a given
point, and then halt. We will
however take if nice and slow, and manually press a button for every instruc-
tion that should be executed. This is called single-stepping the code.

Press [F11] once. This is the key for single-stepping. Note that the yellow
arrow is now pointing at the LDI Temp, 0xFF instruction. This is the instruc-
tion that is going to be executed next.

Press [F11] once more. The LDI instruction is executed, and the arrow points
to the OUT instruction. The Temp Register has now the value 0xFF. (If you
open the "Register 16-31" tree you will see that R16 contains 0xFF. We
defined Temp to be R16, remember?)

Press [F11]. DDRB is now 0xFF, As shown in the IO View above this is rep-
resented as black squares in the IO View. So, a white square represents logi-
cal low "0" and black squares are logical high "1". By setting DDRB high, all
bits of PORTB is configured as outputs.

Press [F11]. 0xFF is now written to PORTB register, and the arrows points
to the DEC instruction. Note that PORTB is equal to 0xFF. Note also that the
PINB register is still 0x00!

Press [F11]. The Temp variable is decremented (0xFF - 1 = 0xFE). In addi-
tion the PINB register changes from 0x00 to 0xFF! Why? To find out why this
happens you have to look at the PORT sections of the datasheet. The expla-
nation is that the PORTB is first latched out onto the pin, then latched back to
the PIN register giving you a 1 clock cycle delay. As you can see, the simula-
tor behaves like the actual part! The next instruction is a relative jump back
to the Loop label.

Press [F11]. The RJMP is now executed, and the arrow is back pointing at
the OUT PORTB, Temp instruction.

Press [F11] to write the new Temp value to the PORTB register. Note that
the content of PORTB is now updated to 0xFE! Continue pressing F11 until
you have counted down the PORTB register to 0x00. What happens if you con-
tinue running the Program?

Conclusion and Recommended Reading
After running through this introduction you should have a basic idea of how to
get a program up and running on the AVR µC.

As mentioned before, one of the most efficient methods of learning AVR pro-
gramming is looking at working code examples, and understanding how these
work. Here on AVRfreaks.net you will find a large collection of projects suitable
to learn you more about the AVR.

In our tools section we have also linked up all Atmel AVR Application Notes.
These are also very useful reading.

❑

A T M E L A P P L I C A T I O N S J O U R N A L

